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Abstract—Road surface quality monitoring is an important
requirement for efficient, safe and comfortable transportation.
However, the data collection is made difficult by the scope of
the data source. Therefore, participatory sensing is a promising
approach for road damage assessment. We are developing
a vehicular participatory sensing application using Android
smart-phones for pothole detection. This paper describes
lessons learned from our field tests, which have exposed the
deficiencies in terms of collected data quality. Nevertheless, the
tests provide invaluable experience for planing future field tests
and improvements to the test execution procedure for vehicular
sensing researchers. Based on empirical and analytical results,
we conclude, that semi-automated ground-truth reference point
recording by a human observer in a moving vehicle while
doing the actual data collection is imprecise as a consequence
of multiple technical and human factors. We also discuss
the motivation, why careful pothole position marking and
categorization by walking along the test track is capable of
providing highly accurate ground-truth.

Keywords-real-world experiment experience; data quality; ve-
hicular sensing; participatory sensing; Android OS.

I. INTRODUCTION

Road surface damage (potholes, bumps, gaps, etc.) are a
serious issues causing distractions for safe and comfortable
transportation. Both drivers and road maintainers are inter-
ested to fix the problems as soon, as possible. To fix them,
they first have to be identified. Centralized road inspection
is difficult due to the scope of road infrastructure. Several
pothole reporting systems already exist, including web sites,
such as [1] [2]. However, they rely entirely on manual
reports of individuals. The requirement for manual human
interaction implies the low report rate, which, we believe,
can in turn be increased dramatically by automated pothole
detection and reporting systems.

We are developing a pothole detection system based on
participatory sensing using Android smartphones in driving
vehicles. Accelerometers and Global Positioning System
(GPS) are used to detect and geotag potholes encountered
during the ride. The system is envisioned to be added as
a service to navigation systems, such as Waze [3], which
people use on daily basis. That would enable large-scale

pothole detection, reports to responsible authorities as well
as publicly available pothole visualization map. Systems
architecture and general principles are described in the
Section II.

To evaluate our approach, a set of field tests (described
in Section III) with multiple Android-based smartphones in
a driving vehicle were performed and acceleration sensor
data for more than five hours of driving were collected.
The analysis of the data revealed both positive and nega-
tive results. On one hand, the initial ground-truth marking
methodology was deficient. On the other hand invaluable
knowledge about vehicular sensing experiment planning,
execution and accurate ground-truth marking, and practical
experience with multiple, distinct, Android devices was
gained. We believe, that our concluding recommendations
(described in Section IV) will improve the quality and reduce
the time investment for experimental evaluation process
of vehicular sensing application researchers. We state the
proposed recommendations as our main contribution in this
paper.

II. SYSTEM ARCHITECTURE

The system (see Figure 1) consists of Android smart-
phones located in vehicles, acting as mobile agents in
urban environment; and central server, which aggregates the
data and provides web interface. 3-axis accelerometers are
required for pothole detection, GPS for event geotagging and
communication (either WiFi or Cellular) for data exchange
with the server. The requirements are not too restrictive, as
the components are available on most of Android phones.

The phone should be either fully charged or connected
to a car charger, as the data collection process may require
significant amount of energy. The most consuming compo-
nents are the touchscreen, which can be turned off if no user
interaction is required, and GPS, which can be optimized by
combination of other localization methods [4].

The sensor sampling and event detection (in the particular
case - potholes, but other types of events can be supported
in general) is performed on the phone. Only reported events



Figure 1. Our system architecture. Mobile phones collect sensor data,
extract events which are exchanged with the central server, where data is
aggregated and web interface is provided.

are sent to the server, without raw sensor data. The server
aggregates reported data and sends back other participant
collected events upon request. Hence the data transmission
channel utilization is very low, and the system has high scal-
ability, which is an important factor for platforms intended
for public and large-scale usage.

The system is intended for use in urban environments, at
speeds up to 70km/h (≈ 37mph).

The event detection involves accelerometer data process-
ing. We have adapted multiple algorithms from our own
[5] and other researcher prior work experience. Briefly,
our algorithms include vertical-axis acceleration and its
standard deviation thresholding by amplitude. More in depth
algorithm analysis is out of the scope of this paper.

III. FIELD TESTS

To evaluate the approach, data collected in real-world
urban environment is required. Therefore a set of field tests
were performed. Data was collected by multiple Android
devices in a driving vehicle. Multiple drives were performed.
Additionally, a laptop with external GPS device and a micro-
phone was used as a reference, detecting potholes by audio
data processing, using RoadMic methodology, described in
our previous work [6].

Online event detection and audio notification was imple-
mented for debugging reasons. Additionally, all the raw data
was recorded for offline processing and analysis, to tune and
assess the detection algorithms and collected data quality.

The test track (Figure 2) was selected due to three signif-
icant features it possesses: short enough to repeat multiple
laps; diverse road segments, both very smooth and very
rough; located in a realistic urban environment.

A. Test setup

The experimental setup and collected data characteristics
is shown in Table I. Overall, the track is 4.4km long
(2.73 miles). Five different Android smartphones were used:
Samsung i5700, HTC Desire, Samsung Galaxy S, HTC
Desire Z, and HTC HD2. Five different test drives were
performed (25th and 28th of January, 10th and 28th of
February, and 24th of March, 2011), using three different
vehicles: BMW 323 Touring, Mitsubishi Space Wagon, and

Figure 2. Used experimental test track, 4.4km long, single and multi lane
streets in urban environment. Regions marked have most of the potholes.

Mazda 323F. Besides accelerometer sensor, microphone data
was recorded for future use. The first and second drives
contained 3 test laps each, the third - one lap. The fourth
and fifth drives contained 10 laps each.

During the first two drives no ground-truth was marked
and the corresponding collected data is therefore only usable
to get an impression of Android smartphone peculiarity,
distinct device, vehicle and environmental factor impact on
sensor data quality.

The goal of the third drive was an insight into ground-
truth marking. A PC laptop with an external GPS and our
custom built ground-truth marking application was used
in the same driving vehicle, where Android phones were
collecting accelerometer data. A human operator pressed
spacebar each time he experienced a street damage initiated
shake, and the software recorded local system time (with
millisecond accuracy) accordingly. Offline pothole detection
was performed, using multiple detection algorithms on the
data collected in the third drive. The detected events were
compared against ground-truth points. The results were
unsatisfactory - only about 65% of the detected events were
in ground-truth point vicinity. Unfortunately, it was unable
to distinguish whether the source of the error is ground-truth
inaccuracy, detection algorithm inappropriateness, or data set
size. And the situation on the road had changed since the
first drives, the ground-truth was not usable as a reference
for the older data.

Therefore the fourth drive was performed, which was
planned to overcome the drawbacks of the first drives. Ten
laps of data collection and ground-truth recording with four
different Android devices were performed, a total of 44
kilometers, more than two hours of data. Unfortunately
inconsistencies in the used semi-automated ground-truth
marking in the driving vehicle were discovered. It led to
a conclusion, that manual ground-truth pothole marking is a



Table I
TEST DRIVE CHARACTERISTICS

Date Vehicle Phones Laps Minutes Kilometers Ground truth

2011-01-25 BMW 323 Touring Samsung i5700, HTC Desire, Samsung Galaxy S 3 32 13.2 No
2011-01-28 Mitsubishi Space Wagon Samsung i5700, Samsung Galaxy S 3 35 13.2 No
2011-02-10 Mazda 323F Samsung i5700, HTC Desire 1 11 4.4 Yes, incomplete
2011-02-28 Mazda 323F Samsung i5700, HTC Desire, Samsung Galaxy S,

HTC Desire Z
10 131 44.0 Yes, incomplete

2011-03-24 BMW 323 Touring Samsung i5700, HTC Desire, Samsung Galaxy S,
HTC HD2

10 119 44.0 Yes, complete

Total 3 5 27 328 118.8 3

better method for accurate reference point selection. A more
in-depth analysis is described in Section III-B.

The fifth drive was performed in conjunction with manual
ground-truth marking. A total of 108 potholes were marked
on the 4.4km long test track (Figure 4c). The points were
recorded on pedestrian sidewalks and GPS signal was inter-
rupted by high buildings. Therefore offline position correc-
tion was performed, by calculating simple perpendiculars
to the mean trajectory of all the 10 laps of the fifth test
drive, as shown in Figure 3. Preliminary analysis shows that
collected data and marked ground-truth in the fifth drive
are sufficiently accurate to perform further pothole detection
algorithm evaluation.

The next two subsections describe the negative and posi-
tive inferences of the collected data.

B. The Dark Side
The offline data processing revealed several deficiencies of

the fourth test drive. Semi-automated ground-truth marking
mechanism seemed to be attractive due to two reasons. First
of all, in such a way only the encountered potholes would be
recorded. Second, it seemed a natural approach, compared
to additional two hour walk with manual point-of-interest
marking on the GPS device (Walking GPS approach [7]).
As it turned out, the capabilities of semi-automated ground-
truth point marking were overrated. It was imperfect both in
terms of accuracy and time-efficiency.

Overall 1326 locations were marked during the 131
minute drive, shown in Figure 4a. Such a set of points cannot
be used as ground-truth directly, therefore it was refined:
only the points which had at least c other points (from other,
distinct, laps) in their vicinity (no further than d meters) re-
mained. A total of 273 ground-truth locations (21% of initial
1326 locations) remained after the refinement procedure with
parameters c = 6 and d = 5 (Figure 4b). Although visually
the refined locations correspond to expectations, more in
depth analysis showed, that their usability is doubtful due to
the following reasons:

1) There is no classification possibilities. All the potholes
are considered equal, regardless of their actual size and
significance. Multiple pothole type support in ground-
truth marking software would be practically useless, as

Figure 3. Manually marked ground-truth position improvement, by
calculating perpendiculars to the test drive trajectory

the human operator would not be able to categorize the
potholes in a short period of time.

2) There is always a distance between the real pot-
hole and the location of the button press, which is,
unfortunately, undetermined and cannot therefore be
eliminated by simple shift operations.

3) During a two hour drive the human ground-truth
marking operator is loosing attention. Hence the last
laps have less accurate ground-truth locations.

4) Lack of precisely defined methodology (when to press
the button) leads to inconsistent results - a particular
pothole is recorded in some laps, ignored in the rest.

5) GPS inaccuracy has a greater impact compared to
Walking GPS approach, where it can be mitigated by
standing a while at the same location and allowing
GPS signal to stabilize.

6) The amount of shake the human perceives depends
not only on the size and type of road irregularity,
but also on vehicle speed and technical condition.
Hence insignificant potholes might get recorded and
significant ones ignored.

7) During the fourth test drive audio signal on a laptop
was recorded and pothole detection by previously
evaluated and reliable RoadMic [6] methodology was
performed. And the results contained contradiction:
while increasing algorithm threshold, detection accu-



(a) 1326 ground-truth points recorded semi-
automatically during the 131 minute long 4th drive

(b) 273 refined ground-truth points (c) 108 manually marked ground-truth points

Figure 4. Ground-truth, acquired semi-automatically in the fourth drive (a), its refined version (b) and manually marked ground-truth of the fifth drive (c)

racy had to increase and reach 100%, but it decreased.
That caused a strong suspicion about the ground-truth
accuracy.

8) Needless to say, the refinement procedure design,
implementation and tuning took more time and effort
than would Walking GPS approach require.

The arguments listed above led to an unpleasant conclu-
sion - the collected ground-truth is inaccurate and cannot be
used as a reference for further algorithm analysis.

Another problem was related to incorrect data storage.
It was assumed, that acceleration values will not exceed
32m/s2 (≈ 3.27g). They were stored in 16-bit variables,
supporting values -32.768..32.767m/s2. However, Samsung
i5700 reported values greater than 32m/s2 (which, we
believe, is a bug of this specific device). It led to a number
of overflows, which required additional time and effort.

Besides systematic problems unexpected ones were also
encountered. Two of four Android devices experienced a
reboot during the fourth ride. The data collection was
restarted as soon as possible, but significant amount of data
was lost: 47 and 16 minutes. The reboot reason is unclear,
but it is probably related to incorrect OS handling of intense
audio data recording, requiring large data buffers and fast
flushing to SD card. In the fifth drive, audio recording was
disabled. But it turned out to be a bad design decision, as
it involved last-minute code modifications and consecutive
bugs which resulted in partial data loss for two devices: 47
and 20 minutes. Additionally, one of the phones ran out of
battery in the fourth drive, 19 minutes of data were lost.

Preliminary audio data analysis showed, that RoadMic
approach cannot be transferred to Android phones directly
due to dynamic range compression used, but further analysis
must be performed to evaluate potential of pothole detection
from audio signal using Android phones.

C. The Bright Side

Although the collected data did not satisfy all of our
research needs, it was valuable for a number of reasons.

First of all, an insight into Android OS impact on sensor
data collection was acquired. On one hand, Android handles

a lot of processes which had to be done manually on an
embedded system. It converts raw values to SI system,
handles chip management, provides simple programming
interface. On other hand, it limits the freedom available on
customized embedded devices. Accelerometer sensor data
is reported as fast as possible, without any guarantees of
minimum or maximum latency. The achieved sampling rate
was relatively low and device dependent.

The most unexpected difference between Android devices
was accelerometer sensor output. Although the four devices
have two common vendors (Samsung and HTC), every
device had different sensor sampling rate, ranging from
26Hz up to 98Hz, see Table II. The sensor sensitivity and
noisiness was also different. For comparison, we calculated
standard deviation for vertical axis acceleration for the same
500 second time period from the fifth drive (fourth drive
for HTC Desire Z, as it was not present on the fifth drive)
for all the devices. Samsung i5700 has significantly higher
deviation compared to other devices.

GPS accuracy was better than we expected, having mean
Android-reported error under 7 meters with more than 7
satellites visible on average (Table II).

The diversity of the test drive environment (snow and
potholes on the road varied a lot during the two month
period) and setup (different vehicles) provide data for vehicle
and environment variety impact assessment. But it will
only be usable, when the correctness of pothole detection
algorithms will be proved.

And, last but not least, the rather negative experience
transforms into conclusions on how to perform the experi-
ments in higher quality and with higher success rate.

IV. EXPERIENCE AND RECOMMENDATIONS

This section describes recommendations based on the
performed vehicular sensing experiments on the Android
platform.

1) Do not mark ground-truth positions in a driving vehi-
cle: detailed motivation is described above, in Section III-B.
The recommended solution is to walk along the test track
with a GPS device, stay a couple of seconds at each position
of interest allowing GPS signal to stabilize, record the



Table II
SENSOR DATA DIFFERENCES BETWEEN DISTINCT ANDROID SMARTPHONES. AVERAGED OVER 10 MINUTE DRIVE.

Accelerometer GPS
Device sampling Z-axis accuracy, locations visible avg. visible

rate, Hz StdDev, g m missing, % satellites satellites
Samsung i5700 26 0.3076 - 4 4-9 6.99

HTC Desire 52 0.1215 4.21 0 4 - 11 9.68
Samsung Galaxy S 98 0.1171 6.35 0 5 - 8 6.35

HTC Desire Z 73 0.1536 3.41 0 7 - 11 9.63
HTC HD2 47 0.1242 1.78 7 4 - 10 7.73

position, and add an event category to it. Offline correction
may be required.

2) Ground-truth is temporary accurate: even in a few
days situation on the road can change. Therefore ground-
truth must be recorded as close to the actual data, as possible.

3) Android devices are different: a complete experimental
evaluation must be performed on more than one device to
get valid results.

4) There is a non-deterministic delay between actual
sensor sampling and data reception in the software: this fact
must be taken into account in situations where the subject
is moving at significant speeds.

5) During long test drives miscellaneous errors can occur
preventing the data collection: It is advisable to monitor the
devices continuously.

6) Although Android is an open platform, it has remark-
able hardware access restrictions compared to customized
embedded platforms (sensor motes): it is reasonable to
invest the saved application creation time to develop more
sophisticated data processing algorithms.

7) Device power supply is an underrated problem: for
each device a decision has to be made - should it require a
power supply during the ride or not? And a supply must be
provided if necessary.

8) Insignificant data recording may distract the essential
data collection: collect just the required information. Other-
wise, software bugs and hardware limitations could degrade
the sensing process.

9) Different value scales cause problems with data inter-
pretation: it is advisable to convert all the data to a unified
scale. Human-readable values are preferred over raw values.

10) It is hard to get the overall understanding of large
data set and location data: visualization techniques are
recommended to simplify pattern perception.

11) Unsynchronized time for devices will lead to ineffi-
cient post-processing: it is advisable to synchronize time
of all the devices before the experimental tests. Note, that
”Use network-provided values” under date&time settings on
Android devices does not mean synchronization with NTP
servers!

V. DISCUSSION

One of the main problems with ground-truth is the lack of
objectiveness. If data processing and event detection system

is considered as a formal logic, ground-truth serves as a set
of axioms used to prove further algorithm accuracy. It is,
however, hard to argue on the correctness of the ground-
truth itself. Three basic requirements for ground-truth as an
axiomatic system for vehicular sensing experiments:

1) Usability - Ground-truth must represent real environ-
mental and road conditions

2) Consistency - Algorithm analysis and comparison to
ground-truth should contain no contradiction

3) Completeness - Ground-truth should be usable as
etalon for analysis of any algorithm that detects the
particular event type

According to Goedel’s Incompleteness theorem, consis-
tency and completeness cannot be guaranteed simultane-
ously in general case.

For Walking-GPS approach, usability follows from its def-
inition: we mark positions of encountered real potholes on
city streets. For semi-automated approach it is arguable: we
mark positions, where it feels similar to pothole. Evaluation
of usability is, however, subjective - locations of particular
events are recorded by humans and represent their viewpoint.

Consistency in this context requires clear response to
”what kind of event is located at x?” for each x. If a location
exists for which it is not clear, whether there is a pothole or
not, it is a contradiction. Semi-automated approach suffers
from such inconsistencies, as described above. Walking-
GPS, and any other methods contain a certain degree of
position deviance due to GPS inaccuracy. But for each
recorded ground-truth point it is clear - there is a real pothole
in close vicinity.

Completeness includes multiple event category support,
as some of the detection algorithms might be intended for
event segregation or intensity detection. Manual ground-truth
marking satisfies this requirement.

An alternative approach would be to use a well-known,
previously proved algorithm as a ground-truth, to which
all the new algorithms are compared. However, in reality,
perfect algorithms with 100% accuracy are rarity. If there is
a well-known algorithm with 90% accuracy as a reference
and a new algorithm matches its results with 90% accuracy,
how accurate really is the new algorithm, 90 ∗ 90 = 81%?
Or is it 100% accurate and the 10% are lost due to reference
algorithm’s imperfection?



Accordingly, we argue, that it is hardly possible to prove
that a particular ground-truth is objective and accurate, as it
contains significant amount of subjectiveness. Still, manual
ground-truth marking provides a reasonable degree of trust.

VI. RELATED WORK

Vehicular sensing systems have been proposed by re-
searchers previously, including BusNet [8], Pothole Patrol
[9], Nericell [10], RoadMic [6]. Besides vehicular applica-
tions, other types of mobile participatory sensing dealing
with environmental monitoring do exist, including BikeNet
[11]. However, in this paper we do not concentrate on data
analysis algorithms or communication and content delivery
protocols, rather on effective and efficient data collection
process and recommendations for improved real-world ex-
periments and deployments.

This paper shares common structural and ideological
patterns with prior research papers concentrating on real-
world wireless sensor network experiences and deployment
recommendations in different application areas, including
precision agriculture [12], environmental [13] and wild
animal monitoring [14], [15]. To the best of our knowledge,
this is the first paper describing field test recommendations
especially for vehicular sensing applications using mobile
phones, having specific requirements and characteristics.

VII. CONCLUSION AND FUTURE WORK

In this paper, we described our experience from urban
vehicular sensing experiments with Android smartphones
detecting potholes by analyzing accelerometer data. Al-
though the collected data is deficient, we draw multiple
highly valuable conclusions. First of all, we admit, that
semi-automated ground-truth location marking by a human
operator pressing a button during the test drive is subject to
multiple errors due to both technical limitations and human
factors. Manual pothole marking and categorization while
walking along the test track is recognized as the right method
for ground-truth recording, but offline position correction is
recommended. We also detect differences between distinct
Android devices, most significant of which is the difference
in accelerometer sampling rate and deviation.

We believe, that our experience will help to improve
efficiency and reduce time and effort fur further experiments
using Android platform for vehicular sensing researchers.
Our future work includes further evaluation of our pothole
detection algorithm accuracy.
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