Poster Abstract: MansOS: Easy to Use, Portable and Resource
Efficient Operating System for Networked Embedded Devices

Atis Elsts
aelsts@acm.org

Leo Selavo
selavo@acm.org

Girts Strazdins
gstazdins@acm.org
Faculty of Computing, University of Latvia

19 Raina Blvd., Riga, LV 1586, Latvia

Institute of Electronics and Computer Science
14 Dzerbenes Str., Riga, LV 1006, Latvia

Abstract

Often software for wireless sensor networks (WSNs) is
developed using a specific event based operating system
(OS) such as TinyOS. However, this requires steep learn-
ing curve for the new developers. Other operating systems
for embedded devices have limited support for new hardware
platforms. Our goal is to provide an operating system for re-
source constrained devices that is easy to use for the wide
range of researchers and developers familiar with C pro-
gramming language and Unix operating system concepts. In
addition, we provide a framework for agile portability to new
hardware platforms, due to the nature of WSN systems that
require specific hardware or features for the sensing tasks at
hand. We propose Multiple agent netted sensor Operating
System (MansOS), that demonstrates ability to execute the
same application on different platforms including x86 CPU
based computers for easy simulation and debugging of a sin-
gle node or a whole network. The new platforms are eas-
ily added to MansOS thanks to the well defined abstraction
layers. MansOS is being successfully used in real world ap-
plications, such as wild animal tracking and environmental
monitoring in a fruit care research garden. It has also been
used in academic environment for teaching wireless sensor
networks.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design;
D.1 [Programming Techniques]; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and Embed-
ded Systems

General Terms
Design

Keywords

Portable operating system, C programming, wireless sen-
sor networks

1 Related Work

Several operating systems (OS) are available to the WSN
community. Perhaps, the most popular is TinyOS[3]. How-

Copyright is held by the author/owner(s).
SenSys’10, November 3-5, 2010, Zurich, Switzerland.
ACM 978-1-4503-0344-6/10/11

ever, having a specific, event driven paradigm, TinyOS is
hard to learn. We are designing MansOS as easy-to-learn
operating system based on concepts known to C and UNIX
programmer. MansOS started as a branch of LiteOS [1] - a
Unix-like OS for WSNs, therefore we share several common
Unix concepts. In contrast to LiteOS, which supports only
AVR-MCU based motes (MicaZ and IRIS), MansOS is de-
signed with different architectures in mind and allows easy
adoption of new platforms. The development of MansOS
has been influenced by Mantis [2] and Contiki [6] operating
systems, though the code in MansOS is optimized both for
resource efficiency and portability.

2 MansOS Architecture and Features

The OS architecture is divided in three tiers: HIL, HAL
and HPL, see Figure 1. The flexible hardware abstraction
approach is borrowed from previous work by Vlado et al [8].
The lowest level, HPL, contains all chip-specific code. HAL
level represents platforms and extension modules, and con-
tains chip selection, pin assignments and platform-specific
constants. HIL level abstracts the lower layers and provides
users with platform-independent services. Complexity of
adding new platforms is reduced by separating chip specific
code, platform specific wiring and platform-independent
routines.

‘LEDs ‘ ‘Timers ‘ ‘USART ‘ ‘Temperature ‘

HIL [un

‘GPIO ‘ ‘ Radio ‘ ‘ Libraries ‘ ‘ FStream ‘

Platforms

TelosB ‘ Device assignment ‘ ‘ Pin assignment ‘
H A I_ ATMega

MSP430 ‘ Platform constants ‘ ‘ Function binding ‘

McCU Radio
HPL [s | [t
ATMega TRM433 | [M25pgo

‘ ‘ Flash ‘ ‘ Humidity ‘ ‘ Device mgr. ‘

Figure 1. MansOS architecture

Key features of the MansOS:

e Easy, plain C programming. See App example 1.
Paradigms from the Unix world are available as op-

tional features: sockets, threads, device manager.

App example 1 The SensorToSerial application in MansOS

#include "mansos.h"
#include "dprint.h"
void appMain () {
PRINT_INIT (128);
while (1) {
uintlé_t light = readVisibleLight();
PRINTF ("light = %u\n", light);
msleep (1000); // sleep one second

e Resource efficiency: macros and inlining are used
where possible to minimize and reuse code. In addi-
tion, Python linker script analyzes exported source file
symbols and assures, that only the required modules are
linked together in the final application. Each Unix-like
feature requires system resources, therefore they are
made optional - features not used can be turned off. Fig-
ure 2 illustrates flash memory savings comparing non-
optimized code to linker optimizations and turning off
thread support. With thread support, MansOS code size
is similar to TinyOS. With threads turned off, MansOS
code size is significantly smaller than that of TinyOS.

OTinyOS OThreads off OLinker optimized BNo optimization

17406]
5556
15246 I

15676]
7122
16880

Code size, B 0 5000 10000 15000 20000 25000 30000

Figure 2. MansOS code size optimizations

e Easy portability: the source code is written as platform-
independent as possible. As a case study the Arduino
(ATMega) platform implementation took 29 hours in to-
tal: 11 hours for AVR datasheet studies and 18 hours for
code implementation in MansOS.

e TelosB is the first implemented platform. Generic
MSP430 platform is also supported - users can build
their own motes based on MSP430 MCU (Such as Epic
mote), specifying only pin assignments of the used
peripherals. The second generic platform supported
is Arduino Duemilanove [4], which is based on AT-
Mega328P MCU. Arduino is widely used among em-
bedded system enthusiasts with limited programming
knowledge. Epic mote [7] and Nordic Semiconductor
nRF24LE!1 System-on-Chip platform [5] support is un-
der development.

e Sensor network simulation on the PC platform is sup-
ported - each mote is simulated as a separate process

on the PC, connecting using sockets to the cloud appli-
cation simulating the virtual communication medium.
Currently one hop network can be simulated.

3 Practical Applications

MansOS is used in two projects: Sensors in the Fruit Gar-
den (Figure 3), where spread of light inside tree crown is in-
vestigated, and LynxNet (Figure 4): wildlife monitoring us-
ing sensor nodes carried by animals and base stations in the
forest.

ki WG

A LI & R ST,
Figure 3. Sensor nodes Figure 4. Mote attached to a
in the tree ”’lynx” emulator

4 Conclusions and Future Work

MansOS is a fully functional OS, used in real applica-
tions. It supports easy interface to sensors, radio, UART and
other peripherals, components similar to Unix environment
such as sockets and device abstraction thus saving sensor
network application development time for users with C lan-
guage and Unix skills. Improvements and additional func-
tionality are planned, including remote reprogramming and
debugging, IPv6 (6lowpan) support and configurable net-
work for PC and heterogenous simulations.

5 Acknowledgements

This work has been partially supported by ESF
under grants Nr.2009/0219/1DP/1.1.1.2.0/APIA/VIAA/020
and Nr.2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004.
6 References
[1] http://liteos.net.

[2] http://mantisos.org.

[3] http://tinyos.net.

[4] http://www.arduino.cc.

[5] http://www.nordicsemi.com.
[6] http://www.sics.se/contiki/.

[7]1 P. Dutta, J. Taneja, J. Jeong, X. Jiang, and D. Culler.
A Building Block Approach to Sensornet Systems. In
SenSys '08: Proceedings of the 6th ACM conference on
Embedded network sensor systems, pages 267-280, New
York, NY, USA, 2008. ACM.

[8]1 H. Vlado, J. Polastre, J. Hauer, C. Sharp, A. Wolisz, and
D. Culler. Flexible Hardware Abstraction for Wireless
Sensor Networks. In Proceedings of the 2nd European
Workshop on WirelessSensor Networks (EWSN 2005),
2005.

